250V N-CHANNEL ENHANCEMENT MODE MOSFET

SUMMARY

 $V_{(BR)DSS}=250V$; $R_{DS(ON)}=8.5\Omega$; $I_{D}=240mA$

DESCRIPTION

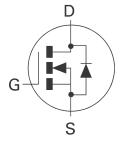
This 250V enhancement mode N-channel MOSFET provides users with a competitive specification offering efficient power handling capability, high impedance and is free from thermal runaway and thermally induced secondary breakdown. Applications benefiting from this device include a variety of Telecom and general high voltage circuits.

SOT223 and SOT23-6 versions are also available.

- High voltage
- · Low on-resistance
- Fast switching speed
- · Low gate drive
- Low threshold
- Complementary P-channel Type ZVP4525G
- SOT223 package

APPLICATIONS

- Earth Recall and dialling switches
- · Electronic hook switches
- High Voltage Power MOSFET Drivers
- · Telecom call routers
- Solid state relays


ORDERING INFORMATION

DEVICE	REEL SIZE (inches)	TAPE WIDTH (mm)	QUANTITY PER REEL
ZVN4525ZTA	7	8mm embossed	1000 units

DEVICE MARKING

N52

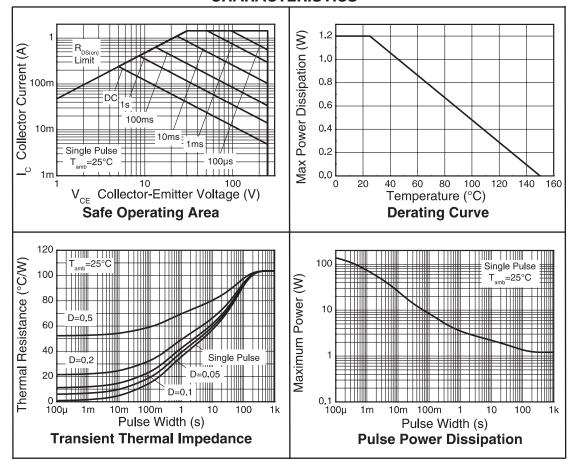
ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	LIMIT	UNIT
Drain-Source Voltage	V _{DSS}	250	V
Gate Source Voltage	V _{GS}	±40	V
Continuous Drain Current $(V_{GS}=10V; TA=25^{\circ}C)(a)$ $(V_{GS}=10V; TA=70^{\circ}C)(a)$	I _D	240 192	mA mA
Pulsed Drain Current (c)	I _{DM}	1.44	А
Continuous Source Current (Body Diode)	Is	1.1	А
Pulsed Source Current (Body Diode)	I _{sm}	1.44	А
Power Dissipation at T _A =25°C (a) Linear Derating Factor	P _D	1.2 9.6	W mW/°C
Operating and Storage Temperature Range	T_j : T_{stg}	-55 to +150	°C

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)	$R_{\theta JA}$	103	°C/W
Junction to Ambient (b)	$R_{\theta JA}$	50	°C/W

NOTES


- (a) For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions
- (b) For a device surface mounted on FR4 PCB measured at t≤5 secs.
- (c) Repetitive rating pulse width limited by maximum junction temperature. Refer to Transient Thermal

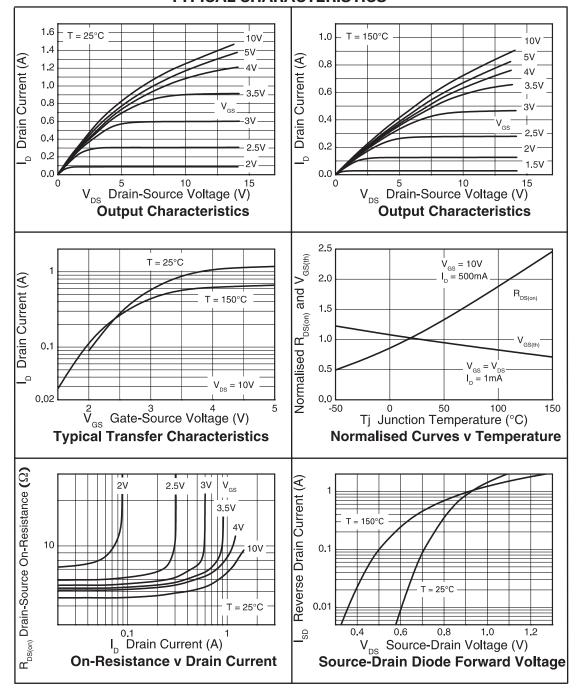
NB High Voltage Applications

For high voltage applications, the appropriate industry sector guidelines should be considered with regard to voltage spacing between conductors.

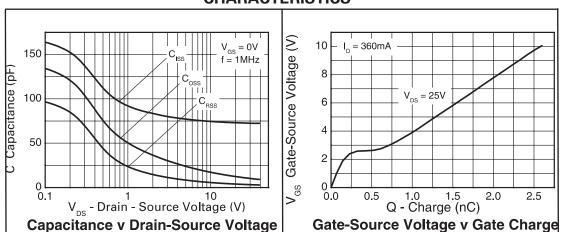
CHARACTERISTICS

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated).

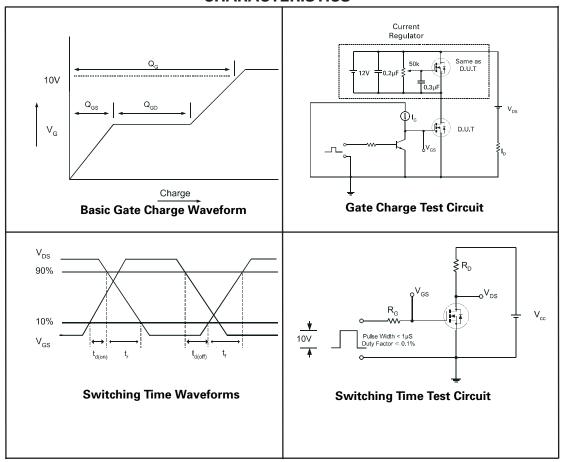
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNI T	CONDITIONS.	
STATIC	•	•	•	•		•	
Drain-Source Breakdown Voltage	V _{(BR)DSS}	250	285		V	I _D =1mA, V _{GS} =0V	
Zero Gate Voltage Drain Current	I _{DSS}		35	500	nA	V _{DS} =250V, V _{GS} =0V	
Gate-Body Leakage	I _{GSS}		±1	±100	nA	V _{GS} =±40V, V _{DS} =0V	
Gate-Source Threshold Voltage	$V_{GS(th)}$	0.8	1.4	1.8	V	$I_D = 1 \text{mA}, V_{DS} = V_{GS}$	
Static Drain-Source On-State Resistance (1)	R _{DS(on)}		5.6 5.9 6.4	8.5 9.0 9.5	Ω Ω Ω	$V_{\rm GS}$ =10V, $I_{\rm D}$ =500mA $V_{\rm GS}$ =4.5V, $I_{\rm D}$ =360mA $V_{\rm GS}$ =2.4V, $I_{\rm D}$ =20mA	
Forward Transconductance (3)	g _{fs}	0.3	475		s	V _{DS} =10V,I _D =0.3A	
DYNAMIC (3)	_						
Input Capacitance	C _{iss}		72		pF		
Output Capacitance	C _{oss}		11		pF	V _{DS} =25 V, V _{GS} =0V, f=1MHz	
Reverse Transfer Capacitance	C _{rss}		3.6		pF		
SWITCHING(2) (3)							
Turn-On Delay Time	t _{d(on)}		1.25		ns		
Rise Time	t _r		1.70		ns	$V_{DD} = 50V, I_{D} = 200 \text{mA}$ $R_{G} = 6.0\Omega, R_{D} = 4.4\Omega$	
Turn-Off Delay Time	t _{d(off)}		11.40		ns	(refer to test circuit)	
Fall Time	t _f		3.50		ns		
Total Gate Charge	Q_g		2.6	3.65	nC	V _{DS} =25V,V _{GS} =10V, I _D =360mA(refer to test circuit)	
Gate-Source Charge	Q _{gs}		0.2	0.28	nC		
Gate Drain Charge	Q_{gd}		0.5	0.70	nC		
SOURCE-DRAIN DIODE			•				
Diode Forward Voltage (1)	V _{SD}			0.97	V	T _j =25°C, I _S =360mA, V _{GS} =0V	
Reverse Recovery Time (3)	t _{rr}		186	260	ns	T _j =25°C, I _F =360mA, di/dt= 100A/μs	
Reverse Recovery Charge (3)	O _{rr}		34	48	nC		


⁽¹⁾ Measured under pulsed conditions. Width=300µs. Duty cycle ≤2%.

⁽²⁾ Switching characteristics are independent of operating junction temperature.

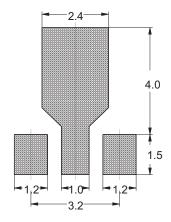

⁽³⁾ For design aid only, not subject to production testing.

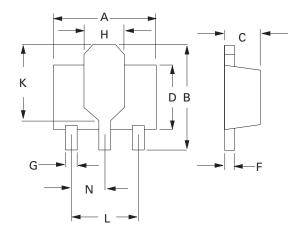
TYPICAL CHARACTERISTICS



CHARACTERISTICS

CHARACTERISTICS




PACKAGE DIMENSIONS

Dim	Millimeters		Inches	
	Min	Max	Min	Max
Α	4.40	4.6	0.173	0.181
В	3.75	4.25	0.150	0.167
С	1.40	1.6	0.550	0.630
D	_	2.6	-	0.102
F	0.28	0.45	0.011	0.018
G	0.38	0.55	0.015	0.022
Н	1.5	1.80	0.060	0.072
K	2.6	2.85	0.102	0.112
L	2.90	3.10	0.114	0.122
N	1.4	1.60	0.055	0.063

PAD LAYOUT DETAILS

SOT89 pattern. Minimum Pad Size (dimensions in mm)

Zelex ptc. Fields New Road, Chadderton, Oldham, OL9-8NP, United Kingdom. Telephone: (44)161 622 4422 (Sales), (44)161 622 4444 (General Enquiries) Fax: (44)161 622 4420

Zetex GmbH Streitfeldstraße 19 D-81673 München Germany Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49

Zetex Inc. 47 Mall Drive, Unit 4 Commack NY 11725 USA

Telephone: (631) 543-7100 Fax: (631) 864-7630

Zetex (Asia) Ltd. 3701-04 Métroplaza, Tower 1 Hing Fong Road, Kwai Fong, Hong Kong Telephone:(852) 26100 611 Fax: (852) 24250 494

These are supported by agents and distributors in major countries world-wide © Zetex plc 2000

www.zetex.com

Ths publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.